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The scalability problems of legacy 
applications

• Usually were not designed with scalability in 
mind.

• Usually have monolithic design.

• Even modular applications use a fake 
separation.
• For example, multiple modules using the same 

framework, communicating each other using 
framework functions.

• The framework is still monolithic.
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Why the scalability problem should 
be solved in your application

• The longer it takes to fix this, higher the cost 
and time.

• The problem won't go away, it will only get 
worst

• as the user base grows,
• with each new feature added.

• Application will become costlier to maintain.
• Then one day it will be unmaintainable.

• There are software development issues that can 
be solved too by fixing this.



Vertical scaling

• Adding more power to the current hardware.

• Usually more disk, memory, processors and 
bandwidth.

• Quickly becomes very expensive.

• Does not scale very well, because of 
technological limitations

• you can only go as far as the fastest processor, the largest 
disk, the biggest network link, etc.



Vertical scaling

• However it is very simple to implement.
• Does not require changes to the application.

• It is usually the first attempted solution.
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Horizontal scaling

• Adding more nodes (servers).

• Usually requires splitting the job done by the 
server and the application.

• Allows to use cheaper resources.

• Requires changes to the application.

• Increases complexity.

• Scales better than vertical scaling.

• Can be used to build redundant solutions.



How to start fixing a legacy application?



Easy fixes

• Leverage separation already present in any PHP 
application.

• Separate 
• database, 
• data files,
• PHP scripts.

• Different servers for each.



Easy fixes, separations presents in 
most PHP applications

Filesystem

Database

PHP 
application

PHP framework

Third-party
PHP code

PHP runtime

C libThird-party libraries

PHP 
extensions

Operative system

Web 
daemon



Easy fixes

• Two servers, one for PHP/files and one for 
database.

• Three servers, one for PHP, one for database, 
one for files.

• Move static (or even public dynamic files) to 
another server (or CDN).

• Use multiple servers for PHP application.
• Use a load balancer.
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Advantages of these easy fixes

• Require minor changes to the web application.

• Relatively cheap
• usually cheaper than using one very large server.

• Easy for most programmers to implement
• mostly changes to session and file management.

• With the load balancing option, it is very easy 
to add more web servers.

• With proper monitoring the load balancing 
option provides some redundancy.



Disadvantages of these easy fixes

• There are still potential bottlenecks and single 
failure points:
• The database server.

• A very common bottleneck for transactional applications.
• It can be replaced with a DB cluster.

• The file server.
• It can be replaced with a SAN or distributed filesystem.

• The load balancer.
• It can also be replaced with multiple load balancers.



Harder fixes.

• Code splitting (module separation)
• Split the application as simpler modules.
• Each module is independent.
• For example, one module for user management, 

another for content management, another for 
online sales, another for social networking, etc.

• Any communication among modules is done 
through the database (database is shared).

• There are alternatives, like web services.

• Each module must be really independent, down to 
the framework and third-party libraries (if used).
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Advantages of code splitting

• Each module is simpler to maintain.

• Each module can be hosted in a different 
server.

• Each module can be build using different 
frameworks, even different languages and use 
different OS.

• Remove most licensing issues as each module 
shares only the data, not the code of other 
modules.



Harder fixes

• Code+data splitting
• Split the application but also the data (multiple 

databases).
• For example, the social networking data may be 

separated from the online sales data, and the 
content management data from the user 
management data.

• Modules still share some databases (for example, 
the users database).

• Easier to implement if the application is already split 
in modules.
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Advantages of code/data splitting

• All the advantages of code splitting plus:
• Data is stored in multiple databases so,

• it can be hosted in different servers,
• and each database can use a different RDBMS,
• or even use a different kind of DB (like NoSQL).



Harder fixes.

• Code+data splitting + data sharding
• Split the application, and data vertically but also 

split the data horizontally.
• For example, the content data can be split in 

multiple databases according to category, or  
content provider, or the user data according to 
geographic location.

• Only make sense with large datasets, with logically 
separated data.
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Advantages of code/data splitting 
+ data sharding

• All the advantages of code/data splitting plus:
• Data is stored in multiple databases, not only per-

module, but per other criteria (client, category, 
region, etc.).

• It allows for greater scalability and performance, as 
long as queries don't require data from multiple 
shards.

• Useful for multitenant applications.
• For data requiring high separation between clients 

(for security, compliance, privacy), the sharding is 
done per client.



New opportunities for code/data split 
applications



New opportunities for code/data 
split applications

• Software development can be split easily 
among teams.
• Each team can develop using whatever language, 

framework and platform they know.
• Increase resilience of the project, as each developer 

is easier to replace affecting temporarily only one 
module.

• Potentially more cost-effective development.
• Allow to outsource the development among 

multiple providers.



New opportunities for code/data 
split applications

• Software development is less risky.
• Easier to fix bugs as they span single modules.
• New features can be deployed without affecting 

other modules.
• Allow to test new solutions (platform, 

methodology, technique, language, etc.) without 
risking the whole application.

• Allow to integrate third-party applications without 
licensing issues.



Other useful solutions not covered

• Caching
• specially PHP caching, including clustered caches like 

Memcached.

• Database clusters
• master-slave, master-master, clustered RDBMS and 

cloud databases.

• Cloud/PaaS scalability
• however most PaaS providers require the 

application have already all the easy fixes 
implemented to leverage their platform.



How to start?



How to start?

• Start with the easy fixes.
• One step at a time.

• Plan and implement module splitting.
• Divide by two. Then by four. Then continue.

• Any new feature or module should be 
implemented independently.



How to start? Easy fixes

• Start implementing the easy fixes in the main 
application.
• Usually only the database, session and file 

management functions require rewriting.
• If your DB, session and file handling code is not 

inside a single class or group of functions, first 
refactor, then split.

• Spaghetti code should be first untangled, then split.



How to start? Module splitting

• Use the documented API of your application 
and start planning how to separate its 
functions per module.

• If you don't have a defined API, define it, then refactor.
• If you have one but is undocumented, document it.

• Decide what data is shared among all modules.

• Then refactor. 
• Never refactor without architectural planning!

• This job is better suited for your current 
development team.

• It requires deep knowledge about your application.



How to start? New modules

• Any new feature or module, should be started 
as a fully separated module, down to the 
framework.
• Design with share-nothing code in mind.
• Remember each module should be independent.
• Share data, not code.

• New modules are good opportunities to test 
new platforms, languages, frameworks and 
development teams.



Questions?
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