
Adding scalability to legacy PHP web
applications

Overview

Mario Valdez-Ramirez

The scalability problems of legacy
applications

• Usually were not designed with scalability in
mind.

• Usually have monolithic design.

• Even modular applications use a fake
separation.
• For example, multiple modules using the same

framework, communicating each other using
framework functions.

• The framework is still monolithic.

Monolithic web application

User mgmt
Session

and
authentication

Catalog

Content
 mgmt

Social
networking

Online sales

Etc.

Framework

Database Filesystem

Why the scalability problem should
be solved in your application

• The longer it takes to fix this, higher the cost
and time.

• The problem won't go away, it will only get
worst

• as the user base grows,
• with each new feature added.

• Application will become costlier to maintain.
• Then one day it will be unmaintainable.

• There are software development issues that can
be solved too by fixing this.

Vertical scaling

• Adding more power to the current hardware.

• Usually more disk, memory, processors and
bandwidth.

• Quickly becomes very expensive.

• Does not scale very well, because of
technological limitations

• you can only go as far as the fastest processor, the largest
disk, the biggest network link, etc.

Vertical scaling

• However it is very simple to implement.
• Does not require changes to the application.

• It is usually the first attempted solution.

Single server, multiple jobs

Web server,
file server

database server

Single server, multiple jobs, vertical
scaling

Web server,
file server

database server

Horizontal scaling

• Adding more nodes (servers).

• Usually requires splitting the job done by the
server and the application.

• Allows to use cheaper resources.

• Requires changes to the application.

• Increases complexity.

• Scales better than vertical scaling.

• Can be used to build redundant solutions.

How to start fixing a legacy application?

Easy fixes

• Leverage separation already present in any PHP
application.

• Separate
• database,
• data files,
• PHP scripts.

• Different servers for each.

Easy fixes, separations presents in
most PHP applications

Filesystem

Database

PHP
application

PHP framework

Third-party
PHP code

PHP runtime

C libThird-party libraries

PHP
extensions

Operative system

Web
daemon

Easy fixes

• Two servers, one for PHP/files and one for
database.

• Three servers, one for PHP, one for database,
one for files.

• Move static (or even public dynamic files) to
another server (or CDN).

• Use multiple servers for PHP application.
• Use a load balancer.

Multiple servers, different jobs

Database
server

Web server,
file server

Multiple servers, different jobs

Database
server

File server

Web server

Multiple servers, different jobs

Web server

File server Static files
server (or CDN)

Database
server

Multiple servers, different jobs

Database
server

File server

Web server

Web server

Load balancer

Advantages of these easy fixes

• Require minor changes to the web application.

• Relatively cheap
• usually cheaper than using one very large server.

• Easy for most programmers to implement
• mostly changes to session and file management.

• With the load balancing option, it is very easy
to add more web servers.

• With proper monitoring the load balancing
option provides some redundancy.

Disadvantages of these easy fixes

• There are still potential bottlenecks and single
failure points:
• The database server.

• A very common bottleneck for transactional applications.
• It can be replaced with a DB cluster.

• The file server.
• It can be replaced with a SAN or distributed filesystem.

• The load balancer.
• It can also be replaced with multiple load balancers.

Harder fixes.

• Code splitting (module separation)
• Split the application as simpler modules.
• Each module is independent.
• For example, one module for user management,

another for content management, another for
online sales, another for social networking, etc.

• Any communication among modules is done
through the database (database is shared).

• There are alternatives, like web services.

• Each module must be really independent, down to
the framework and third-party libraries (if used).

Code splitting

Session
and

authentication

User mgmt

Framework

Content
 mgmt

Framework

Catalog

Online sales

Framework

Social
networking

Framework

Database

Advantages of code splitting

• Each module is simpler to maintain.

• Each module can be hosted in a different
server.

• Each module can be build using different
frameworks, even different languages and use
different OS.

• Remove most licensing issues as each module
shares only the data, not the code of other
modules.

Harder fixes

• Code+data splitting
• Split the application but also the data (multiple

databases).
• For example, the social networking data may be

separated from the online sales data, and the
content management data from the user
management data.

• Modules still share some databases (for example,
the users database).

• Easier to implement if the application is already split
in modules.

Code+data splitting

Session
and

authenticationUser mgmt

Framework

Content
 mgmt

Framework

Catalog

Online sales

Framework

Social
networking

Framework

Database

Database

Database Database

Advantages of code/data splitting

• All the advantages of code splitting plus:
• Data is stored in multiple databases so,

• it can be hosted in different servers,
• and each database can use a different RDBMS,
• or even use a different kind of DB (like NoSQL).

Harder fixes.

• Code+data splitting + data sharding
• Split the application, and data vertically but also

split the data horizontally.
• For example, the content data can be split in

multiple databases according to category, or
content provider, or the user data according to
geographic location.

• Only make sense with large datasets, with logically
separated data.

Code+data splitting+sharding

Session
and

authenticationUser mgmt

Framework

Content
 mgmt

Framework

Catalog

Online sales

Framework

Social
networking

Framework

Database

Database

Database Database

Advantages of code/data splitting
+ data sharding

• All the advantages of code/data splitting plus:
• Data is stored in multiple databases, not only per-

module, but per other criteria (client, category,
region, etc.).

• It allows for greater scalability and performance, as
long as queries don't require data from multiple
shards.

• Useful for multitenant applications.
• For data requiring high separation between clients

(for security, compliance, privacy), the sharding is
done per client.

New opportunities for code/data split
applications

New opportunities for code/data
split applications

• Software development can be split easily
among teams.
• Each team can develop using whatever language,

framework and platform they know.
• Increase resilience of the project, as each developer

is easier to replace affecting temporarily only one
module.

• Potentially more cost-effective development.
• Allow to outsource the development among

multiple providers.

New opportunities for code/data
split applications

• Software development is less risky.
• Easier to fix bugs as they span single modules.
• New features can be deployed without affecting

other modules.
• Allow to test new solutions (platform,

methodology, technique, language, etc.) without
risking the whole application.

• Allow to integrate third-party applications without
licensing issues.

Other useful solutions not covered

• Caching
• specially PHP caching, including clustered caches like

Memcached.

• Database clusters
• master-slave, master-master, clustered RDBMS and

cloud databases.

• Cloud/PaaS scalability
• however most PaaS providers require the

application have already all the easy fixes
implemented to leverage their platform.

How to start?

How to start?

• Start with the easy fixes.
• One step at a time.

• Plan and implement module splitting.
• Divide by two. Then by four. Then continue.

• Any new feature or module should be
implemented independently.

How to start? Easy fixes

• Start implementing the easy fixes in the main
application.
• Usually only the database, session and file

management functions require rewriting.
• If your DB, session and file handling code is not

inside a single class or group of functions, first
refactor, then split.

• Spaghetti code should be first untangled, then split.

How to start? Module splitting

• Use the documented API of your application
and start planning how to separate its
functions per module.

• If you don't have a defined API, define it, then refactor.
• If you have one but is undocumented, document it.

• Decide what data is shared among all modules.

• Then refactor.
• Never refactor without architectural planning!

• This job is better suited for your current
development team.

• It requires deep knowledge about your application.

How to start? New modules

• Any new feature or module, should be started
as a fully separated module, down to the
framework.
• Design with share-nothing code in mind.
• Remember each module should be independent.
• Share data, not code.

• New modules are good opportunities to test
new platforms, languages, frameworks and
development teams.

Questions?

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38

